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Abstract: Stemming from the relevance of binding energy in understanding the formation, reactivity, and stability of 

molecular species, particularly in astrochemical environments, this current study leverages an ensemble model 

integrating six machine learning algorithms: Bagging, Linear Regression, Random Forest, Gradient Boosting, 

Bayesian Ridge, and Ridge Regression to predict the binding energies of astrochemically relevant molecules. 

Gradient Boosting demonstrated superior performance in capturing predictive accuracy and variance among 

individual models. The ensemble model surpassed the predictive power of single algorithms, offering a robust 

framework for complex chemical systems. The correlation between predicted binding energies and desorption 

temperatures provides insight into molecule-surface interaction strengths. The ensemble approach illustrates 

the potential of machine learning techniques in solving intricate astrochemical problems. The ensemble 

methods effectively capture complex relationships within the molecular data, leading to more accurate and 

reliable predictions. The results obtained here can be applied in astrochemistry and material sciences and further 

stress the relevance of machine learning in predictive modeling in Chemistry and other related fields. 
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Introduction 

Space may be the source of prebiotic chemicals and 

compounds with properties related to the origin(s) of life on 

Earth (Petrignani & Candian 2022). Cations make up around 

10% of all known molecular species in the circumstellar and 

interstellar regions. According to Etim and Arunan (2015), 

about 80% of these cations are protonated species whose 

neutral counterparts are likewise recognized molecular 

species in the interstellar medium (ISM). Since hydrogen has 

an unquestionably great cosmic abundance, it serves as the 

main reactant in the majority of ISM chemical reactions. The 

ionized forms of hydrogen, H+ and H3
+, are the fundamental 

components of ion-molecule reactions, which are the 

predominant gas phase chemistry activities in ISM and occur 

with little to no activation barrier (Etim et al., 2017). This 

suggests that any neutral molecular species in the ISM can 

be protonated via gas-phase reaction, given the enormous 

abundance of H₃⁺ in the molecular clouds. In the gas phase, 

protonated species are primarily formed by the reaction of 

neutral species with a variety of interstellar ions, including 

H⁺, H3⁺, C⁺, He⁺, HCO⁺, CH3⁺, and H3O⁺. The neutral 

species naturally arises from the protonated species as well. 

Proton binding energies (PBEs) and protonated species that 

correspond to the same neutral species might differ when a 

proton binds to a neutral molecule at multiple locations 

within the molecular structure. The PBE's magnitude 

provides strength and stability to the protonated species. The 

PBE's magnitude provides the protonated species. Simply 

put, a greater PBE value indicates a stronger proton-neutral 

connection and therefore a higher degree of stability for the 

protonated species. Astronomical observations are 

influenced by the direct correlation between a molecular 

species' interstellar abundance and stability (Etim et al., 

2020). 

The most stable species are known to be the most abundant 

in the ISM when compared to their less stable counterparts, 

with the exception of situations in which other factors such 

as distinct formation routes, interstellar hydrogen bonding, 

etc., play a major role (Etim et al., 2018; Etim and Arunan, 

2016a; Etim and Arunan, 2017). Given a neutral molecule 

that gives birth to two distinct protonated species, each with 

a different PBE, the protonated species with the highest PBE 

is therefore the most stable relative to the other with the 

lower PBE. In comparison to its counterpart with lesser 

stability, the most stable protonated species should be easier 

to identify due to their greater abundance (assuming that 

reaction routes do not differ much). This is because, in 

contrast to its isomer, which arises from a higher PBE value 

for the identical neutral species and tends to remain 

protonated, the species with a lower PBE can readily transfer 

its proton and revert to its neutral state. Because the 

protonated substances with low PBE have low stability and 

also have high reactivity, which lowers their interstellar 

abundance and makes astronomical detection of them 

challenging (Etimet al., 2018). 

One way of understanding the complex chemical processes 

driving the formation, evolution, and interactions of 

molecules in the astrochemical environment is by the 

computation of their binding energies (Villadsen et al., 

2022). The accuracy of this binding energy is critical in the 

determination of molecular stability, reactivity, and the 

potential for life in space. These energies play a key role in 

the fate of molecules on interstellar dust grains, influencing 

processes like molecule formation, desorption, and 
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subsequent reactions (Siebenmorgen & Zacharias, 2020). 

Desorption, in particular, is the process by which molecules 

detach from surfaces, often driven by temperature changes, 

and is crucial for understanding how molecules transition 

from solid to gas phases in space (Bovolenta et al., 2020). 

Accurately predicting desorption energies is vital for 

modeling the dynamic chemical environments found in 

astrophysical settings. 

Although traditional methods like Density Functional 

Theory (DFT) (Spiegelman et al., 2020) and Hartree-Fock 

(Hirao et al., 2023) are highly accurate for calculating 

binding energies, they require substantial computational 

resources, making them impractical for large-scale studies 

involving diverse molecular species. This makes them 

impractical for large-scale studies involving diverse 

molecular species (Andrew et al., 2018). 

One of the main experimental techniques used to measure 

binding energies is temperature-programmed desorption 

(TPD) (Johnson et al., 2024). TPD assesses the energy 

needed to desorb molecules from a surface as temperature 

increases, offering valuable insights into molecular stability 

under various astrophysical conditions (Smith & Kay, 2018). 

Despite their accuracy, TPD and other experimental methods 

are often limited by their complexity, high costs, and the 

time needed to conduct extensive studies. 

Due to these challenges, interest in alternative methods that 

strike a balance between accuracy and efficiency has 

emerged. Machine learning (ML) has proven itself as the 

latest improvement, which has opened new possibilities for 

modeling complex relationships in high-dimensional data, 

with the prospect of serving as an alternative to traditional 

approaches (Tufail et al., 2023; Samuel et al., 2024). 

Villadsen and his team, who showed up as pioneers in this 

field (Villadsen et al., 2022), utilized machine learning 

approach via Gaussian Process Regression to predict the 

binding energies of molecules and achieved results with an 

accuracy of less than ±20% deviation from literature values. 

Although machine learning techniques are highly effective 

at managing large datasets and are particularly well-suited 

for predicting binding energies, relying on a single model 

may have limitations that can impact accuracy and 

robustness. To overcome these challenges, ensemble 

methods, which integrate multiple models, offer improved 

performance by leveraging the strengths of different 

predictive approaches and addressing the weaknesses of 

individual models (Mohammed & Kora, 2023; Etim et al., 

2018; Etim et al., 2020). 

Ensemble-based Bayesian methods were used in the 

assessments, such as the uncertainty quantification in 

computational fluid dynamics (CFD) problems (Zhang et al., 

2020). Ensemble methods have been shown to achieve 

superior performance in predictive studies. This 

investigation is aimed at combining six different machine 

learning algorithms, including bagging, linear regression, 

random forest, gradient boosting, and bayesian ridge 

regression, to predict the binding energy of molecules of 

potential relevance to astrochemistry, enabling us to to 

hypothesize at this point that the outcome of the combined 

ensemble machine learning methods will perform better in 

predicting the binding energies of these molecular species 

compared to the individual methods.  The objectives of this 

research are threefold: 

1. To construct an ensemble model that combines the 

strengths of Bagging, Linear Regression, Random 

Forest, Gradient Boosting, Bayesian Ridge, and 

Ridge Regression for predicting binding energies 

of astrochemically relevant molecules. 

2. To evaluate the performance of the ensemble 

model and compare it with individual models 

using appropriate metrics. 

3. To provide insights into the potential applications 

of the ensemble model in astrochemistry and 

highlight future research directions. 

 

Methods and Data 

Our study employs an ensemble approach combining six 

machine learning algorithms to predict binding energies 

(BEs) of astrochemically relevant molecules. The ensemble 

model integrates bagging, linear regression, random forests, 

gradient boosting, Bayesian ridge, and ridge regression to 

leverage their distinct strengths and enhance predictive 

accuracy. These algorithms are trained on a dataset 

containing binding energies obtained from temperature-

programmed desorption (TPD) experiments and molecular 

features such as surface category, atomic composition, and 

functional groups. The training data enables the model to 

generalize and make accurate predictions for molecules and 

surfaces not seen during training (Samuel et al., 2024; 

Samuel et al., 2023; Shinggu et al., 2023). 

The model’s performance was evaluated using 

bootstrapping and five-fold cross-validation. The former 

involves repeated sampling with replacement, creating 

multiple training and testing sets. The latter involves 

dividing the dataset into five sub-parts, when one of the 

subset is used as a test; the remaining four were used for 

training. The model’s accuracy was ascertained via three 

metrics: Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and R-squared (R²). Afterwards, we used the 

models to estimate the binding energies of 21 molecules 

present in the ISMs and compared with known experimental 

data (Oba et al., 2009; Samuel et al., 2023). 

Ensemble Method 

The ensemble method is employed in this study to enhance 

the predictive accuracy of binding energies (BEs) by 

combining the strengths of multiple models. By aggregating 

the predictions from various models, ensemble learning 

produces a more accurate and robust prediction than any 

single model could achieve independently (Mienye & Sun, 

2022; Samuel et al., 2024; Osigbemhe et al., 2022). The 

ensemble in this work includes bagging, linear regression, 

random forest, gradient boosting, Bayesian ridge, and ridge 
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regression models, each contributing uniquely to the final 

prediction. 

Bagging(Bootstrap Aggregating) 

This is a powerful ensemble technique that builds multiple 

versions of a model by training each version on a different 

bootstrap sample of the original data (Awujoola et al., 2020; 

Etim et al., 2023). These models are then averaged for 

regression or majority-voted for classification. For a 

regression problem, the final prediction is computed as the 

mean of all individual model predictions from the bagged 

ensemble: 

 
…where y is the number of models in the ensemble. 

This reduces variance and improves model stability and 

accuracy by training multiple base models on different 

subsets of the data and averaging their predictions. 

Random Forest 

Random Forest is an ensemble learning method primarily 

used for classification and regression tasks which leverages 

the concept of combining multiple decision trees to enhance 

predictive performance and mitigate over-fitting (Zhu, 2020; 

Oladimeji, et al., 2024; Samuel et al., 2023; Samuel et al., 

2024). It enhances the ensemble by creating a multitude of 

decision trees using different subsets of the data and features. 

Each tree contributes to the final prediction, which is the 

average of the individual tree predictions. The Random 

Forest prediction is given by: 

 
…where each represents the prediction from the th decision 

tree. 

Linear Regression is a fundamental statistical technique 

used to model and analyze the relationship between a 

dependent variable and one or more independent variables. 

The primary goal of linear regression is to identify the best-

fitting linear relationship that predicts the dependent variable 

based on the values of the independent variables. (James et 

al., 2023). It provides a simple, yet effective baseline in the 

ensemble. It models the relationship between input features 

and output as a linear combination of the input features: 

 
…where is the intercept, are the coefficients, and is the 

number of features. 

Gradient Boosting 

Gradient Boosting is an advanced ensemble learning 

technique that builds predictive models by combining 

multiple weak learners, typically decision trees, to create a 

robust and accurate model. The method iteratively improves 

the model by focusing on the errors made by previous 

iterations, making it highly effective for both classification 

and regression tasks. (Bentéjac et al., 2021; Etim et al., 

2017). It takes a sequential approach by building models that 

correct the errors of their predecessors. Each new model is 

trained to minimize the residual errors from the combined 

previous models: 

 
…where is the learning rate, controlling the contribution of 

each learner to the final prediction. 

 Bayesian Ridge Regression 

Bayesian Ridge Regression provides a probabilistic 

framework for linear regression by incorporating prior 

distributions on the regression coefficients, which helps 

manage over-fitting and quantify prediction uncertainty 

(Imane et al., 2022). It assumes a prior distribution over the 

model parameters and computes a posterior distribution 

given the data (Etimet al., 2022). The prediction is made 

using the mean of the posterior distribution: 

 
…where  is the regularization parameter that controls the 

trade-off between fitting the data and keeping the 

coefficients small. 

Ridge Regression 

In situations when the independent variables are highly corr

elated, ridge regression is a techniquefor estimating the coe

fficients of multiple-regression models and 

is often referred to as Tikhonov regularization, after Andre

y Tikhonov. In this study, hyper-parameters for each model 

in the ensemble were carefully tuned using cross-validation 

to achieve optimal performance. The ensemble approach 

leverages the diversity of its constituent models—combining 

the simplicity of Linear Regression, the robustness of Ridge 

Regression, the probabilistic nature of Bayesian Ridge, and 

the powerful tree-based methods of Random Forest and 

Gradient Boosting. 

The final ensemble prediction is formed by averaging the 

predictions from all models, providing a balanced and 

accurate prediction of BEs. The variance across the models 

in the ensemble offers an uncertainty estimate, indicating the 

confidence level in the predictions, thus enhancing the 

model's reliability when applied to new, unseen data. 

 
Fig. 1: Workflow: First, molecular data is collected from 

temperature-programmed desorption experiments and 

categorized based on binding energies. Next, relevant 

molecular features are selected and engineered, including 

atomic composition, functional groups, and valence 

electrons. 

Data preparation and Feature Engineering 

For this study, we utilized a dataset sourced from Villadsen 

et al. (2022), which integrated data from various laboratory 

studies to create a comprehensive binding energy (BE) 

dataset. To avoid redundancy, 354 monolayer and 167 

multilayer datasets were merged, streamlining it to 117 

single datasets of unique molecules ranging from simple 

diatomics to complex organic molecules (COMs) such as N2, 

CO, hydrocarbons (e.g C8H18), ethanol (C2H5OH), 

glycolaldehyde (HOCH2CHO) etc. 

Feature engineering was crucial in transforming this dataset 

for effective modeling.  By extracting molecular features 
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based on atomic compositions and functional groups via 

RDKit python module, the molecules were converted to 

SMILES strings and various properties which are 

fundamental for molecular binding were computed such as 

valence electrons, topological polar surface area (TPSA) 

which captures molecular interactions like hydrogen 

bonding, Van der Waals forces etc, hydrogen bond donors 

and acceptors.  

 

Table 1: Overview of Molecular Features Used in the Dataset 

Feature 

Category 

Feature Description Examples 

Atoms Carbon Presence of carbon atoms in the molecule. Graphene, graphite, 

highly oriented pyrolytic 

graphite 

 Hydrogen Presence of hydrogen atoms in the molecule.  

 Nitrogen Presence of nitrogen atoms in the molecule.  

 Oxygen Presence of oxygen atoms in the molecule.  

 Chlorine Presence of chlorine atoms in the molecule.  

 Cyanide Presence of cyanide (–CN) groups in the molecule.  

Functional 

Groups 

Alcohol (–OH) Presence of hydroxyl (–OH) groups in the molecule.  

 Amide (–NC(O)–) Presence of amide (–NC(O)–) groups in the molecule.  

 Amine (–NH₂) Presence of amine (–NH₂) groups in the molecule.  

 Carbonyl (–C(O)–) Presence of carbonyl (–C(O)–) groups in the 

molecule. 

 

 Carboxyl (–

COOH) 

Presence of carboxyl (–COOH) groups in the 

molecule. 

 

 Ester (–C(O)O–) Presence of ester (–C(O)O–) groups in the molecule.  

 Ether (–O–) Presence of ether (–O–) groups in the molecule.  

RDKit& 

Misc. 

Number of H-bond 

Acceptors 

Number of hydrogen bond acceptor atoms in the 

molecule. 

 

 Number of H-bond 

Donors 

Number of hydrogen bond donor atoms in the 

molecule. 

 

 Number of Valence 

Electrons 

Total number of valence electrons in the molecule.  

 Topological Polar 

Surface Area 

Sum of the surface area of polar atoms in the 

molecule, measured in Å². 

 

 Molecular Mass The total mass of the molecule.  

 Number of Atoms Total number of atoms in the molecule.  

Surface Carbon Surface type involving carbon-based materials. Graphene, graphite, 

highly oriented pyrolytic 

graphite 

 Metal Surface type involving metals. Gold, nickel 

 Silicate Surface type involving silicate materials. Amorphous silicate, 

forsterite 

 Water Surface type involving water. Amorphous solid water, 

crystalline water 

 

To manage the diverse range of surfaces and their effects, 

the merged dataset categorized surface features into four 

primary groups: Carbon (e.g., graphene, graphite), Metal 

(e.g., gold), Silicate (e.g., amorphous silicate), and Water 

(e.g., amorphous and crystalline water). These categories 

were numerically encoded using one-hot encoding for input 

into machine learning models, simplifying the handling of 

various surface types while ensuring model clarity. This 

categorization aimed to balance the need for detailed surface 

characteristics with the practicalities of model training. 

As the dataset now consists of a unified collection of data, 

we did not need to distinguish between monolayer and 

multilayer entries in our feature engineering process. 

However, it is important to acknowledge that variations in 

pre-exponential factors used in some studies and the 

potential distribution of BEs on certain surfaces could still 

impact the accuracy of our models. This underscores the 

importance of future refinements in dataset completeness 

and model accuracy to enhance the reliability of our 

predictions. 
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Results and Discussion 

In the following sections, we will assess the model's 

performance through two distinct evaluation techniques.  

 

Bootstrapping 

Bootstrapping involves creating multiple resamples of the 

dataset with replacement and then training and testing the 

model on these resampled datasets (Vrigazova, 2021). This 

technique helps to come up with a distribution of the 

performance metrics e.g MAE, RMSE, and R², across the 

various bootstrap samples. From the results of the mean and 

standard deviation calculations to obtain these metrics, a 

comprehensive understanding of the model’s performance 

can be obtained which may vary with different data subsets, 

helping to ascertain its stability and generalization 

capabilities. 

 
Fig.   2: Visual representation of the bootstrapping 

process, detailing the original data and the bootstrap 

samples. 

The bootstrapping analysis revealed that the ensemble 

model, combining predictions from multiple regression 

models, consistently performed well with a MAE of 0.0327, 

RMSE of 0.0418, and an R² of 0.9370. Individual models 

such as Gradient Boosting demonstrated even lower MAE 

(0.0125) and RMSE (0.0180), showcasing their precision. 

The bootstrapping process also highlighted areas of model 

uncertainty and potential biases, which are crucial for 

understanding the model's robustness. This thorough 

evaluation ensures that the model's performance is both 

reliable and generalizable, guiding further refinements and 

improving predictive accuracy for practical applications. 

The corresponding parity plots are shown in the figures 

below. 

Leave-one-molecule-out cross validation 

Leave-one-molecule-out cross-validation (LOMO-CV) was 

also employed to assess the model's performance in 

predicting the BEs. This approach involves excluding each 

molecule sequentially from the dataset, training the model 

on the remaining molecules, and then evaluating the 

model's predictions on the excluded molecule. This method 

provides a robust measure of how well the model 

generalizes to new, unseen data. 

Table 2 details the predicted binding energies and the 

corresponding literature values for various molecules, 

including their molecular formulas. For example, the model 

predicts a binding energy of 0.1367 eV for methane (CH₄) 

on carbon, with a deviation of 0.0277 eV from the literature 

value of 0.109 eV. Similarly, the predicted value for 

Ammonia (NH₃) on Carbon is 0.2583 eV, with a minimal 

deviation of 0.0007 eV from the literature value of 0.259 eV. 

Water (H₂O) on carbon has a predicted binding energy of 

0.4644 eV, deviating by 0.0504 eV from the literature value 

of 0.414 eV. Across all tested molecules, the average 

deviation of predicted binding energies from the literature 

values is within ±10%, reflecting the model's overall 

accuracy while highlighting areas for further refinement. 

This detailed evaluation through LOMO-CV ensures a 

comprehensive understanding of the model's predictive 

capabilities and its reliability in various scenarios. 

Ensemble Model Performance with Mean Predictions: 

The ensemble model, combining predictions from six 

distinct regression models (Bagging, Linear Regression, 

Random Forest, Gradient Boosting, Bayesian Ridge, and 

Ridge Regression), demonstrates robust performance across 

multiple evaluation metrics, underscoring its efficacy in 

predicting astrochemical binding energies. 

 
Fig. 3: Performance and Predictions of the Multi-Model 

Ensemble Approach for Astrochemical Binding Energies 

Figure 3 above illustrates the efficacy of a multi-model 

ensemble approach in predicting astrochemical binding 

energies with high accuracy. The left subplot features a 

scatter plot comparing actual binding energies (x-axis) with 

mean predicted values (y-axis) from the ensemble model. 

Each blue dot represents a data point, with proximity to the 

red dashed line indicating minimal deviation from ideal 

predictions. Model performance metrics include a Mean 

Absolute Error (MAE) of 0.0327, Root Mean Squared Error 

(RMSE) of 0.0418, and an R-squared (R²) value of 0.9370, 

these highlights precision and reliability. The right subplot 

shows predictions from individual models like Bagging, 

Linear, Random Forest, Gradient Boosting, Bayesian Ridge, 

and Ridge regressors, with their mean depicted by a black 

dashed line. This aggregation smooths variability, enhancing 

prediction robustness and reducing uncertainty, 

demonstrating superior accuracy in astrochemical binding 

energy predictions. 

● Mean Absolute Error (MAE): 0.0327 

● Root Mean Squared Error (RMSE): 0.0418 

● R-squared (R²): 0.9370 

Individual Model Performance: 
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Ridge Regression: 

 
Fig.   4: Ridge Regression Performance and Predictions 

with Uncertainty Estimates for Astrochemical Binding 

Energies 

The performance of the Ridge Regression model in 

predicting the binding energies are shown in figure 4, along 

with uncertainty estimates for its predictions. In the plot, the 

left subplot shows a comparison between actual binding 

energies ( in the x-axis) and predicted values (in the y-axis) 

and each blue dotted point represents a data point, the red 

dashed line corresponds to perfect prediction alignment. The 

outcome of the model revealed the following:  

● MAE: 0.0528 

● RMSE: 0.0746 

● R²: 0.7993 

This indicates that 79.93% of the variance in actual 

binding energies are captured by the model's predictions. 

The right subplot shows individual predictions (blue dots) 

and their associated uncertainties (red error bars) across data 

points (x-axis). This visualizes the model's predictive 

uncertainty, showing that while many predictions are 

accurate, some exhibit significant variability, emphasizing 

areas where the model's confidence is lower. 

Ridge regression performs adequately with moderate error 

metrics and a reasonable fit (R²). It serves as a comparative 

baseline for evaluating other models. 

Bagging Regressor: 

Figure 5 depicts the performance of the Bagging Regressor. 

The left subplot is a scatter plot comparing actual binding 

energies (x-axis) with predicted binding energies (y-axis). 

Each blue dot represents a data point. The tight clustering of 

the blue dots along the red dashed line, which signifies 

perfect prediction, indicates that the model's predictions are 

very close to the actual values. This alignment suggests a 

high level of accuracy, further supported by the metrics: a 

Mean Absolute Error (MAE) of 0.0185, a Root Mean 

Squared Error (RMSE) of 0.0256, and an R-squared (R²) of 

0.9764. These metrics imply that the model has a low 

average prediction error and that 97.64% of the variance in 

actual binding energies is accounted for by the predictions, 

reflecting a strong predictive capability. 

 
Fig.  5: Performance and Uncertainty Estimates of the 

Bagging Regressor for Predicting Astrochemical Binding 

Energies 

● MAE: 0.0185 

● RMSE: 0.0256 

● R²: 0.9764 

The bagging regressor significantly outperforms Ridge 

regression, exhibiting substantially lower MAE and RMSE, 

indicative of superior predictive accuracy and a higher 

explained variance (R²). 

Gradient Boosting Regressor: 

 
Fig.   6: Performance and Uncertainty Estimates of the 

Gradient Boost Regressor for Predicting Astrochemical 

Binding Energies 

● MAE: 0.0125 

● RMSE: 0.0180 

● R²: 0.9883 

Gradient boosting exhibits higher predictive performance in 

comparison with all other individual models, achieving the 

lowest MAE and RMSE, and the highest R². This model 

excels in capturing the intricate relationships within the 

dataset, yielding precise predictions with minimal error. 

Random Forest Regressor: 
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Fig.   7: Performance and Uncertainty Estimates of the 

Random Forest Regressor for Predicting Astrochemical 

Binding Energies 

● MAE: 0.0184 

● RMSE: 0.0255 

● R²: 0.9766 

Similar to bagging, random forest demonstrates strong 

performance with low error metrics and a high R², 

indicating robust predictive capabilities suitable for 

complex data patterns. 

Lasso Regression: 

 
Fig.   8: Performance and Uncertainty Estimates of the 

Lasso Regression for Predicting Astrochemical Binding 

Energies 

● MAE: 0.1138 

● RMSE: 0.1387 

● R²: 0.3060 

Lasso regression exhibits the weakest performance among 

the models tested, characterized by higher MAE and 

RMSE, and a lower R2. This model struggles to effectively 

explain variance compared to more flexible approaches. 

Bayesian Ridge Regression: 

 
Fig.   9: Performance and Uncertainty Estimates of the 

Bayesian Ridge Regression for Predicting Astrochemical 

Binding Energies 

● MAE: 0.0532 

● RMSE: 0.0749 

● R²: 0.7974 

Bayesian ridge regression performs similarly to Ridge 

regression, providing moderate error metrics and a 

reasonable fit to the data. 

Discussion 

Model Comparison 

Gradient boosting stands out as the top performer among 

individual models, demonstrating exceptional predictive 

accuracy and variance capture. This model is known to 

perform better due to its ability to correct errors of previous 

predictions (Hastie et al., 2009). Its ability to minimize 

errors and maximize R² underscores its suitability for precise 

astrochemical binding energy predictions. 

Ensemble Model Performance: 

The ensemble model leverages the strengths of individual 

models, achieving performance metrics (MAE, RMSE, R²) 

comparable to or exceeding those of its constituent parts. 

This amalgamation mitigates model-specific weaknesses, 

enhancing overall predictive robustness. 

Uncertainty and Confidence: 

Lower MAE and RMSE values in individual models 

correlate with greater prediction confidence. Models like 

gradient boosting and random forest, with superior 

performance metrics, offer reliable predictions crucial for 

scientific and engineering applications. 

Desorption 

The figure 10 below illustrates the desorption profiles for 

eight of the astronomically relevant molecules adsorbed onto 

various surfaces, analyzed under a heating rate of 1 K 

century⁻¹. Each subplot shows the desorption rate as a 

function of temperature, with the peak desorption 

temperature (Tₚ) indicated by a green dashed line. 
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Fig 10: Desorption profiles for eight of the astronomically 

relevant molecules adsorbed onto various surfaces, analyzed 

under a heating rate of 1 K century⁻¹.  
 

 

Table 2: Key Observations from the peak desorption temperature predictions 

 

S/N Molecule Peak Desorption 

Temperature 

, (K) 

Implication/Description 

1 Methane (CH4) on carbon ~171 Relatively easy desorption, sharp peak indicating narrow 

temperature range. Suggest homogenous binding energy on 

carbon surface 

 

2 Ammonia (NH₃) on Carbon 113 
Lower  compared to methane, suggest weaker interaction 

with the carbon surface, narrow peak implies uniform 

adsorption sites 

 

3 Water (H₂O) on Carbon ~65 
Low , reflecting weak van der Waals interactions, sharp 

peak indicates a homogeneous interaction 

 

4 Hydrogen Cyanide (HCN) on 

Metal 

~100 Slightly broader peak than methane and ammonia, variation 

in binding energy on the metal surface 

 

5 Carbon Monoxide (CO) on 

Silicon (Si) 

65 
Low , i.e weak physisorption on the silicon surface, 

sharp peak suggests uniform adsorption energy. 

 

6 Ethane (C2H6) on Water 78 
Relatively low  implies weak interactions, narrow peak 

indicates minimal variation in binding energies. 

 

7 Formaldehyde (H2CO) on 

Metal 

90 Relatively sharp peak implies uniform binding sites and 

consistent interaction strength on the metal surface 

 

8 Methylamine (CH3NH2) on 

Water 

67 
 slightly higher than water but lower than most other 

molecules weak physisorption with possible hydrogen 

bonding to the water surface. The sharp peak suggests 

uniform interaction 
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Implications 

The desorption temperatures (Tₚ) provide insights into the interaction strength between each molecule and its respective surface. 

Higher Tₚ values (e.g., methane on carbon) indicate stronger binding and require higher temperatures for desorption, whereas 

lower Tₚ values (e.g., water on carbon, CO on silicon) suggest weaker interactions. 

 

Table 3: Predicted Binding Energies and Actual Binding Energies of some of the molecules 

 

Name Surface Predicted Ebin (eV) Literature Ebin 

(eV) 

Deviation (eV) 

Methane Carbon 0.1367479 0.109 0.0277479 

Methane Si 0.1367479 0.118 0.0187479 

Ammonia Carbon 0.2582816 0.259 0.0007184 

Ammonia Metal 0.2582816 0.264 0.0057184 

Water Carbon 0.4644318 0.414 0.0504318 

Acetylene Water 0.239338 0.241 0.001662 

Hydrogen cyanide Metal 0.3057397 0.311 0.0052603 

Carbon monoxide Si 0.0869211 0.069 0.0179211 

Ethane Metal 0.2268072 0.198 0.0288072 

Formaldehyde Metal 0.2990792 0.324 0.0249208 

Methylamine Carbon 0.2725481 0.276 0.0034519 

Methanol Metal 0.4061696 0.405 0.0011696 

Oxygen Si 0.1002881 0.078 0.0222881 

Methylacetylene Water 0.3213736 0.362 0.0406264 

Acetonitrile Si 0.4069568 0.396 0.0109568 

Isocyanic acid Metal 0.3470626 0.383 0.0359374 

Carbon dioxide Water 0.2136935 0.174 0.0396935 

Nitric oxide Si 0.3353052 0.337 0.0016948 

 

These findings enhance our understanding of surface chemistry and adsorption processes, particularly in the contexts of 

astrochemistry and environmental science where low-temperature desorption is significant. The uniform desorption peaks imply 

that the surfaces studied offer relatively homogeneous adsorption sites, simplifying the modeling of desorption kinetics in larger 

systems. 
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Conclusion 

The ensemble of diverse regression models effectively 

predicts astrochemical binding energies, surpassing the 

predictive capacity of individual models. This study 

highlights the prospects of ensemble techniques in 

advancing predictive modeling within complex chemical 

systems, offering insights and methodologies applicable 

across various scientific domains. Understanding the 

complex chemical processes driving molecule formation, 

evolution, and interactions in the astrochemical environment 

is crucial for determining molecular stability, reactivity, and 

potential for life in space. Accurately predicting desorption 

energies is vital for modeling dynamic chemical 

environments in astrophysical settings. Traditional methods 

like Density Functional Theory (DFT) and Hartree-Fock are 

highly accurate but require substantial computational 

resources, making them impractical for large-scale studies 

involving diverse molecular species. Temperature-

programmed desorption (TPD) is one of the main 

experimental techniques used to measure binding energies 

but is often limited by complexity, high costs, and time. 

Machine learning (ML) has emerged as an alternative 

method that strikes a balance between accuracy and 

efficiency, offering improved performance by leveraging the 

strengths of different predictive approaches and addressing 

the weaknesses of individual models. Gradient boosting is 

the top performer in individual models for predictive 

accuracy and variance capture, making it suitable for precise 

astrochemical binding energy predictions. Ensemble 

models, which combine the strengths of individual models, 

achieve performance metrics comparable to or exceeding 

their constituent parts, enhancing overall predictive 

robustness. Models like gradient boosting and random 

forests offer reliable predictions crucial for scientific and 

engineering applications. 
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